Digests » 161

this week's favorite

Thinking like transformers

What is the computational model behind a Transformer? Where recurrent neural networks have direct parallels in finite state machines, allowing clear discussion and thought around architecture variants or trained models, Transformers have no such familiar parallel. In this paper we aim to change that, proposing a computational model for the transformer-encoder in the form of a programming language. We map the basic components of a transformer-encoder -- attention and feed-forward computation -- into simple primitives, around which we form a programming language: the Restricted Access Sequence Processing Language (RASP). We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer, and how a Transformer can be trained to mimic a RASP solution. In particular, we provide RASP programs for histograms, sorting, and Dyck-languages. We further use our model to relate their difficulty in terms of the number of required layers and attention heads: analyzing a RASP program implies a maximum number of heads and layers necessary to encode a task in a transformer. Finally, we see how insights gained from our abstraction might be used to explain phenomena seen in recent works.

13 essential tips for learning machine learning and data science

Once you’ve mastered the topic, it’s easy to look back and see the fastest path from noob to pro. If you only could go back in time and give yourself the roadmap. Even if I cannot do that with myself, I can do that for others. This is the objective of this article: to give you the tips I wish I knew when I started learning data science and machine learning.

Homepage feed multi-task learning using TensorFlow

LinkedIn’s members rely on the homepage feed for a variety of content including updates from their network, industry articles, and new job opportunities. Members can engage with this content in multiple ways, including commenting on or resharing posts. It is the job of our relevance system to understand the different needs of these members and present a personalized experience that provides an ecosystem optimized to foster productive professional development.

Towards causal representation learning

The two fields of machine learning and graphical causality arose and developed separately. However, there is now cross-pollination and increasing interest in both fields to benefit from the advances of the other. In the present paper, we review fundamental concepts of causal inference and relate them to crucial open problems of machine learning, including transfer and generalization, thereby assaying how causality can contribute to modern machine learning research. This also applies in the opposite direction: we note that most work in causality starts from the premise that the causal variables are given. A central problem for AI and causality is, thus, causal representation learning, the discovery of high-level causal variables from low-level observations. Finally, we delineate some implications of causality for machine learning and propose key research areas at the intersection of both communities.

Real-time facial surface geometry from monocular video on mobile GPUs

We present an end-to-end neural network-based model for inferring an approximate 3D mesh representation of a human face from single camera input for AR applications. The relatively dense mesh model of 468 vertices is well-suited for face-based AR effects. The proposed model demonstrates super-realtime inference speed on mobile GPUs (100-1000+ FPS, depending on the device and model variant) and a high prediction quality that is comparable to the variance in manual annotations of the same image.