One email per week, 5 links.

Do you want to keep up to date with the latest trends of machine learning, data science, and artificial intelligence?

But keeping up to date with all the blogs, podcasts, and articles is time consuming so why not let someone else curate the content for you?

With our weekly newsletter you will get 5 top stories hand-picked into your inbox every Monday with topic ranging from neural networks, deep learning, Markov chains, natural language processing, covering scientific papers, and even basics of statistics, data science, and data visualisations.

Escape the distractions of social media and own your focus. Check out the latest issue and subscribe!

AI Digest#126

this week's favorite

Modern Practical Natural Language Processing

The idea is we make short videos that focus on the aspects of NLP that currently work well and are useful. Speech-to-text now works pretty well, so these methods will also be useful for the audio portions of videos.

Semantic Editing of Scenes by Adding, Manipulating or Erasing Objects

Recent advances in image generation gave rise to powerful tools for semantic image editing. However, existing approaches can either operate on a single image or require an abundance of additional information. They are not capable of handling the complete set of editing operations, that is addition, manipulation or removal of semantic concepts.

The Most Complete Guide to PyTorch for Data Scientists

PyTorch has sort of became one of the de facto standards for creating Neural Networks now, and I love its interface. Yet, it is somehow a little difficult for beginners to get a hold of.

How to deploy PyTorch Lightning models to production

Looking at the machine learning landscape, one of the major trends you can see is the proliferation of projects focused on applying software engineering principles to machine learning. Cortex, for example, recreates the experience of deploying serverless functions, but with inference pipelines. DVC, similarly, implements modern version control and CI/CD pipelines, but for ML.

Reinforcement learning is supervised learning on optimized data

In this blog post we discuss a mental model for RL, based on the idea that RL can be viewed as doing supervised learning on the “good data”. What makes RL challenging is that, unless you’re doing imitation learning, actually acquiring that “good data” is quite challenging.


The Tech Resume Inside Out: What a Good Developer Resume Looks Like

A practical guide written by the people who do the resume screening: engineering managers and technical recruiters working at tech companies. Also, Gergely gives the book for free to developers who have lost their jobs due to current world situation.